Images de Synthèse Animées

Nicolas Holzschuch Cours d'Option Majeure 2 Nicolas.Holzschuch@imag.fr

Plan

- Plan du cours
 - Questions techniques
- Vue d'ensemble de la synthèse
- Coordonnées homogènes
- Modélisation paramétrique

2

Plan du cours (1)

- Techniques d'image de synthèse
 - Techniques de base
 - Formant un tout cohérent
 - Vues de façon très pratique
- La technique n'est pas tout :
 - Art
 - Interface utilisateur
 - Non traités en cours, mais essentiels

À propos de vous

- Motivations, envies ?
- Arrière-plan, connaissances :
 - Informatique :
 - Majeure 1 Informatique ?
 - C, C++?
 - OpenGL ?
 - Math/Physique:
 - ODE ? RK4 ? Maxwell ? Cinématique inverse ?

Questions techniques

- •Les TD:
 - Avec OpenGL
 - Langage C
- Examen :
 - Oral
 - Projets ?

Livre de cours ?

• Les diapos de chaque cours sont (seront) sur le

site web: http://artis.imag.fr/~Nicolas.Holzschuch/cours/isa_maj2.html

- Si vous voulez en savoir plus :
 - Foley, vanDam, Feiner et Hughes
 - Computer Graphics, Principles and Practice
 - Gros, complet, cher
 - Ou bien: Introduction to Computer Graphics

 - Moins gros, moins complet, moins cher
 Traduit en français : Introduction à l'infographie
 - E. Haines & T. Möller, Real-Time Rendering

Plan du cours (2)

- Modélisation
 - Modèles paramétriques
 - Modèles hiérarchiques
 - Déformations du modèle
- Animation
 - Cinématique inverse
 - Résolution des équations différentielles
 - Particules, masse-ressort,...
- Rendu (temps-réel)
 - Modèles complexes de matériaux
 - Ombres en temps-réel
 - Affichage temps-réel : niveaux de détail, etc.

Images de Synthèse

- Processus à plusieurs étapes
 - Modélisation (+ artiste)
 - Animation
 - Keyframe, cinématique, contraintes, dynamique
 - Aspects réaliste
 - Contraintes de l'histoire
 - Rendu
 - Affichage
 - Aspect réaliste
 - Contraintes de temps

8

Films d'animation

- · Story-board
- Modèle géométrique
 - Dessin, sculpture, scanner 3D
- Animation :
 - Mouvements à grande échelle
 - Mouvements précis
- Rendu :
 - Rendu rapide pour vérification (tps réel)
 - Rendu complet :
 - 90 mn par image, 25 img/sec, 1h30 de film = 202500 h de calcul

_		
-		
-		
_		
_		
-		
-		
_		
_		
-		
_		
_		
_		
-		
_		
_		
-		
_		

Du concret • DVD Rendu (suite) • Rendu temps-réel de plus en plus sophistiqué : 10 fps en 2001 (NVIDIA demo, Siggraph 2001.) Plan • Plan du cours - Questions techniques • Vue d'ensemble de la synthèse • Coordonnées homogènes • Modélisation paramétrique

Transformations géométriques

- Représentation vectorielle des points
 - Points attachés aux primitives graphiques
 - Sommets, centres,données volumiques...
- Transformations sur ces données
 - Translation, rotation, changement d'échelle...
 - Projections:
 - Perspective, parallèle...
 - Notation unifiée ?

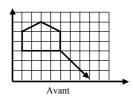
13

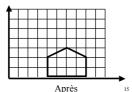
En 2 dimensions

- •On commence en 2D
 - Plus facile à représenter
- Chaque point est transformé:

$$-x'=f(x,y)$$

$$-y'=g(x,y)$$

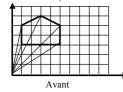

• Comment représenter la transformation ?


Translations

• Modification simple :

•
$$x' = x + t_x$$

•
$$y' = y + t_y$$



Changement d'échelle

• Les coordonnées sont multipliées par le facteur de changement d'échelle :

•
$$\chi' = S_{\chi} \chi$$

•
$$v' = s...v$$

Notation matricielle

• C'est une multiplication matricielle :

$$P' = SP$$

$$\begin{bmatrix} x \\ \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} x$$

18

Rotation • Rotation en 2D : • $x' = \cos x - \sin y$ • $y' = \sin x + \cos y$

Notation matricielle • Rotation = multiplication matricielle : P'=RP				

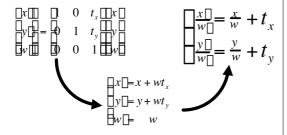
Unification

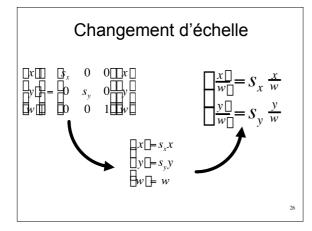
- Notation simple, concise
- Mais pas vraiment unifiée
 - Addition ou bien multiplication
 - Comment faire pour concaténer plusieurs transformations ?
- On veut une notation unique
 - Qui permette de noter aussi les combinaisons de transformations
 - Comment faire ?

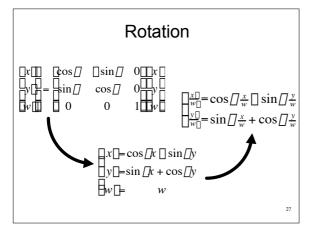
2

Coordonnées homogènes

- Outil géométrique très puissant :
 - Utilisé partout en Infographie (Vision, Synthèse)
 - cf. aussi géométrie projective
- ullet On ajoute une troisième coordonnée, w
- Un point 2D devient un vecteur à 3 coordonnées :


Coordonnées homogènes


- Deux points sont égaux si et seulement si :
 - -x'/w' = x/w et y'/w' = y/w
- w=0: points « à l'infini »
 - Très utile pour les projections, et pour certaines


Et en 3 dimensions?

- •C'est pareil
- Introduit une quatrième coordonnée, wDeux vecteurs sont égaux si: x/w = x'/w', y/w = y'/w' et z/w=z'/w'Toutes les transformations sont des matrices 4x4

Translations en c. homogènes

Composition des transformations

- Il suffit de multiplier les matrices :
 - composition d'une rotation et d'une translation:

M = RT

- Toutes les transformations 2D peuvent être exprimées comme des matrices en coord. homogènes
 - Notation très générale

Rotation autour d'un point Q

- Rotation autour d'un point Q:
 - Translater Q à l'origine (\mathbf{T}_{Q}),
 - Rotation autour de l'origine (\mathbf{R}_{\square})
 - Translater en retour vers Q (- $T_{\rm Q}$).

$$\longrightarrow$$
 P'=(- \mathbf{T}_{Q}) \mathbf{R}_{\square} \mathbf{T}_{Q} P

29

Translations en 3D

$$T(t_{x},t_{y},t_{z}) = \begin{bmatrix} 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ = x + wt_{x} \\ y \\ z \\ = z + wt_{z} \\ w \\ = w$$

Changement d'échelle en 3D

$$S(s_{x}, s_{y}, s_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x = s_{x}x$$

$$y = s_{y}y$$

$$z = s_{z}z$$

$$w = w$$

Rotations en 3D

- Rotation : un axe et un angle
- La matrice dépend de l'axe et de l'angle
- Expression directe possible, en partant de l'axe et de l'angle, et quelques produits vectoriels
 - Passage par les quaternions
- Fait par la librairie graphique :
 - glRotatef(angle, x, y, z)

32

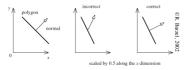
Toutes les transformations 3D

- Toute transformation 3D s'exprime comme combinaison de translations, rotations, changement d'échelle
 - Et donc comme une matrice en coordonnées homogènes
- Fournies par la librairie graphique :
 - $\ glTranslatef(x,\,y,\,z);$
 - glRotatef(angle, x, y, z);
 - glScalef(x, y, z);

36

Transformations 3D (suite)

- •On peut faire ses transformations soi-même :
 - glLoadIdentity();
 - glLoadMatrixf(pm);
 - glMultMatrixf(pm);
- Pile de transformations :
 - glPushMatrix();
 - glPopMatrix();


Exemple

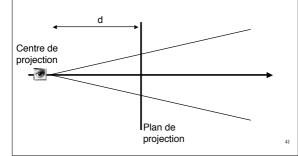
```
drawHighLevelObject(parameters) {
    glPushMatrix()
    glRotate(...)
    glTranslate(...)
    glScale(...)
    drawSimpleShape()
    glIPopMatrix()
}
drawModel() {
    glPushMatrix()
    drawHighLevelObject1(...)
    glTranslate(...)
    drawHighLevelObject2(...)
    [etc...]
    glIPopMatrix()
```

38

Transformation des normales

- Vecteur normal (à la surface)
- · Pas vraiment un vecteur
 - Définit une relation sur les vecteurs
 - Une forme linéaire, un co-vecteur

• Transformation en utilisant la transposée de l'inverse de ${\it M}$


:

Supplément : Projection perspective

• Projection sur le plan *z*=0, avec le centre de projection placé à *z*=-*d*:

Supplément : perspective (suite)

Supplément : perspective (suite)

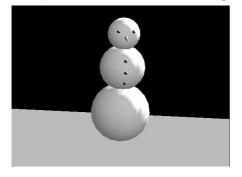
- •Coord. homogènes essentielles pourperspective
- La rétrécissement des objets utilise w

$$w = \frac{z}{d} + w$$

$$\frac{x}{w} = \frac{x}{\frac{z}{d} + w}$$

• Impossible sans coordonnées homogènes

Perspective : en pratique


- Fait par la librairie graphique :
 - gluLookAt(Eyex, Eyey, Eyez, Centerx, Centery, Centerz, upx, upy, upz);
 - gluPerspective(fovy, aspect, zNear, zFar);

Modèlisation paramétrique

- Dit aussi modélisation procédurale
 - Modèle fait par un programme
 - Fondamental en infographie
- Paramètres de position
- Paramètres de forme
 - Forme des parties de l'objet
 - Position relative des parties de l'objet

44

Exemple : bonhomme de neige

45

Exemple : bonhomme de neige

- Trois sphères empilées
- Paramètres :
 - $\, \acute{E} crasement$
 - Inclinaison
 - Pour chaque sphère
- Sujet du TD 1
 - Modèle 2D, représentation 3D

Modélisation paramétrique

- Routine draw()
- OpenGL effectue les actions de base
 - Élimination des parties cachées,
 - Modèle simple d'éclairage
- OpenGL conserve l'état courant :
 - Matériau, taille des lignes, polygones remplis
 - Transformation courante
 - Plus pile de transformations

47

Modèle paramétrique

- Animation faite sur les paramètres
- Animation :
 - Key-frame interpolation
 - Motion capture
 - Entrée par l'utilisateur
 - Cinématique
 - Cinématique inverse
 - Dynamique
- Choix en fonction des contraintes
 - Scenario, réalisme...
 - Mélange de méthodes

48

Animation: key-frame interpolation

- Animateur fournit données entrée
 - Position, vitesse... à temps t_i
- Interpolation entre points de contrôle
- Courbes de Bézier 2D
- Re-paramétrisation

Animation : Motion Capture

Animation : donné par l'utilisateur

- Action directe de l'utilisateur sur les paramètres
- Fourni par la souris
 - $-(x_0, y_0)$ et (x_t, y_t)
- Relation entre action de la main et du modèle
 - Perception logique
- Difficile d'agir sur modèle complexe
 - Quel partie de l'objet ?

4

Animation : cinématique

- Vitesse donnée en entrée
 - Programme calcule la position
- Utile pour des objets simples, trajectoires simples
- Contrôle complet de l'objet
 - Pratique pour suivre le scenario
- ...mais besoin d'un contrôle complet de l'objet
 - Difficile pour l'animateur

Animation : cinématique inverse

- Objets complexes
 - Bras articulé
- Animation d'une partie de l'objet
- Calcul des positions du reste de l'objet
- Simple pour animateur/joueur
- Problème complexe
 - Non-linéaire, pas d'unicité, pas de continuité \ldots

53

Animation: dynamique

- · Lois de la dynamique, appliquées au modèle
- Trajectoires réalistes
 - Si modèle réaliste
- Complexité pour imposer résultat
- Utile pour particules, objets secondaires...

54

Contenu du cours

- Modélisation, animation, rendu
- Coordonnées homogènes
 - Transformations 3D
 - Perspective
- Modèle paramétrique
- Techniques d'animation